Evaluating Drug Efficacy: Leveraging Machine Learning Insights For Placebo Response Modeling

¹NetraMark Corp, ²Department of Pathology and Molecular Medicine, Queen's University, ³Centre for Biotechnology and Genomic M

INTRODUCTION

PLACEBO RESPONSE CHALLENGE IN PSYCHIATRIC DISORDER CLINICAL TRIALS

Placebo response in clinical trials often leads to trial failure, necessitating larger sample sizes, prolonged recruitment time, and high study costs.

Leverage machine learning (ML) algorithms to identify characteristics of drug and placebo response across psychiatric clinical trials, spanning bipolar disorder, anxiety, and schizophrenia.

METHODOLOGICAL ISSUE BEING ADDRESSED

We explore the impact of ML-generated placebo response modeling on clinical trial design and patient enrichment strategies.

METHODS

DATASETS

- **Bipolar 1 Disorder Trial:** 378 patients evaluating the therapeutic efficacy of an investigational drug for acute depressive disorder using clinical scales (NCT01467700).
- **Phase III Anxiety Trial:** 171 active patients and 161 controls featuring ~100 independent variables per subject.
- Phase IIa Schizophrenia Trial: 87 patients randomized to the placebo arm and 48 to the study drug treatment, with 128 variables per subject including clinical scales and physiological measurements.

MACHINE LEARNING APPROACH

A novel ML algorithm was used to analyze efficacy, demographics, and safety data for predicting placebo responses. Independent variables were extracted from initial patient assessments, while dependent variables were based on trial outcomes. The algorithm used has the capability to deconstruct the patient population into explainable and unexplainable subpopulations.

- Explainable subpopulations are used to generate 'personas' characterized by 3-12 statistically significant variables.
- Drug effects are distinguished from placebo by applying the same model to the active and placebo arms of a trial. Comparative analysis of predicted response rates elucidates the degree of drug efficacy relative to placebo.

By fracturing data sets into explainable subsets, this AI avoids overfitting and provides powerful insights:

- This methodology can be used to discover precision I/E criteria to enrich subsequent trials.
- The data from the schizophrenia trial revealed actionable insights that led to I/E criteria that could greatly improve p-values in subsequent trials.
- The anxiety drug lacked the efficacy to be improved and these techniques reflected this shortcoming while avoiding overfitting

Joseph Geraci^{1,2,3,4}, Bessi Qorri¹, Luca Pani^{5,6}, Larry Alphs¹

CONCLUSIONS AND SIGNIFICANCE

REFERENCES

- 1. Smith *et al.* Using artificial intelligence-based methods to address the placebo response in clinical trials. Innov Clin Neurosci (2022) 19(1-3):60-70 Hafliðadóttir, S. H. et al. Placebo response and effect in randomized clinical trials: meta-
- research with focus on contextual effects. Trials 22, (2021) Smith, E. A. et al. Using Artificial Intelligence-based Methods to Address the Placebo Response in Clinical Trials. *Innov Clin Neurosci* **19**, 60 (2022)
- Tsay, Mi., Geraci, J. & Agrawal, A. Next-Gen AI for Disease Definition, Patient Stratification, and Placebo Effect. doi:10.31219/OSF.IO/PC7AK.
- Morlock, R. & Geraci, J. Placebo Response Propensity Scale (PRPS) Scores and Probability of Placebo Response by Disease Severity.

I Sciences, University of California San Diego , ⁵Miller School of Medicine, University of Miami, ⁶University of Modena and Reggio Emilia

endpoint of 50%	Variable	Explanation
separation from placebo.	↓CTSS 49	NR had less desire to get better
ication of an explainable	↓CTSS 15	NR think less of meds
e items and 2 YMRS items	↓CTSS 38	NR struggled for less time
oling CTSS M due to no	↓CTSS 01	NR forget more often
enne CISS-IVI que to no	↓CTSS 41	NR felt worse about signing up
	个CTSS 50	NR had more faith in talk therapy
time	个YMRSSC	Total NR high

HAMD1)	Inclusion Criteria	Expected Effect on Study Population
	CTSS Q18 ≥ 4	Removes most DNR but keeps many PR, eliminating PNR
	CTSS Q25 ≥ 2	Removes many PR and keeps many PNR Removes most DR and DNR with high screen fail rate
	CTSS Q26 ≥2	Removes many PR and keeps most PNR; more DNR
	CTSS Q9 ≥4	Removes many DNR and keeps most DR; more PR remain
xcept on	CTSS Q7≥7	Removes many DNR and keeps most DR No cut off score significantly reduces relative number of PR
7, Q9, IR	Total Score CTSS ≥40	Any cut off seems to remove PR, PNR, DR, and DNR similarly

Inclusion Criteria	Expected Effect on Study Population
Depression Scale ≥1	Removes most PR; Little effect on drug treatment group, but removes more DNR
Supine Respiration >16	Removes most PR; removes a few more DNR; High screen failure rate
Emotional Withdrawal ≤2	Removes most PR; removes more DNR; Increases screen failure rate
Disorientation ≤1	Removes many PR; Removes most DNR; Increases screen failure rate
Attention > 0	Removes DNR and many PR; Some increase in screen failure rate
Judgement and Intuition ≥1	Removes most DNR and PR; Increases screen failure rate
Cognitive Total ≥6	Removes most DNR and PR; Big increase in screen failure rate

DISCLOSURES

Joseph Geraci is the founder of NetraMark and is a significant shareholder of NetraMark Holdings, which is a publicly traded company. Bessi Qorri, Luca Pani. Luca Pani's disclosures (past 3 years): AbbVie, USA; Acadia, USA; Alexion, Italy; BCG, Switzerland; Boehringer Ingelheim International GmbH, Germany; Compass Pathways, UK; EDRA-LSWR Publishing Company, Italy; Ferrer, Spain; Gedeon-Richter, Hungary; GLG-Institute, USA; Immunogen, USA; Inpeco SA, Switzerland; Ipsen-Abireo, France; Johnson & Johnson USA; NeuroCog Trials, USA; Novartis-Gene Therapies, Switzerland; Sanofi-Aventis-Genzyme, France and USA; NetraMark, Canada*; Otsuka, USA; Pfizer Global, USA; PharmaMar, Spain; Relmada Therapeutics, USA*; Takeda, USA; Vifor, Switzerland; WCG-VeraSci/Clinical Endpoint Solutions, USA (*options/shares)

