Understanding treatment response in pancreatic cancer: NetraAI provides genetic differentiation in FOLFIRINOX and Gemcitabine response

Bessi Qorri1, Mike Tsay1, Douglas Cook1,2, Josh Spiegel1, Joseph Gerač1,3,4,5

1NetraMark Corp, 2Department of Surgery, Queen's University, 3Department of Pathology and Molecular Medicine, Queen's University, 4Centre for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, 5Arthur C. Clarke Center for Human Imagination, School of Physical Sciences, University of California San Diego

BACKGROUND
Pancreatic cancer is known as a “silent killer” due to vague symptoms, late diagnosis, rapid progression, and poor response to therapy. Pancreatic cancer is the 14th most common cancer and 7th leading cause of cancer-associated deaths.

CURRENT STANDARD OF CARE:
Combination chemotherapy using FOLFIRINOX (FFX) or Gemcitabine with nab-paclitaxel (GnP).

CHALLENGES:
• Pancreatic cancer is a complex disease that is highly malignant in nature.
• Prolonging progression-free survival (PFS) and overall survival (OS) has remained a challenge due to disease heterogeneity.

OPPORTUNITY:
The COMPASS trial was the first prospective evidence of the potential predictive power of molecular profiling showing that there are unique advanced pancreatic ductal adenocarcinoma (PDAC) genomic and transcriptomic subtypes with molecular heterogeneity between individuals and differing responses to chemotherapy.

OBJECTIVES:
Identify causal genomic and transcriptomic factors that characterize molecular subtypes that capture heterogeneity between individuals and differing response to chemotherapy (GnP vs FFX) & elucidate how our methodology could improve clinical trial endpoint significance.

METHODOLOGY & WORKFLOW

Table 1. COMPASS Trial treatment program and response.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Complete Response</th>
<th>Partial Response</th>
<th>Stable Disease</th>
<th>Progressive Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>GnP</td>
<td>41</td>
<td>55</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>FFX</td>
<td>29</td>
<td>44</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

PERSPECTIVE ANALYTICS & HYPOTHESIS-GENERATION:
NetraAI has the ability to extract meaningful insights from multi-dimensional and highly heterogeneous patient population datasets to discover causal factors that affect patient response to FFX and GnP.

• Causal feature set discovery methodology.
• Generated hypotheses to discover unknown subpopulations that are defined by multiple genes and provide explanations for underlying driving mechanisms behind each subpopulation.
• Identify which patients are explainable to improve pancreatic survival through a precision medicine approach.

RESULTS

NetraMark AI Analysis: Uncovering hypotheses associated with pancreatic cancer response to standard of care protocols FFX and GnP

Genetic mechanisms differentiating FFX and GnP response in stable disease PDAC patients.

Using NetraAI, we identified key drivers of differentiation between responses to FFX and GnP treatment in stable disease patients (between a 30% loss and 20% growth of tumor) to reveal 3 distinct subpopulations (Figure 1).

• Loop 1: (9 GnP responders) characterized by downregulated LRRC8E and UGT1A5.
• Loop 2: (13 FFX, 4 GnP responders) characterized by downregulated LRRC8E, PTPRH, and SORT1.

Genetic mechanisms differentiating FFX and GnP response in stable disease, partial response, and complete response PDAC patients.

To extract more information from the COMPASS trial dataset, using NetraAI we:

• Generated a map that identified drivers of differentiation between FFX and GnP responders with stable response (>30% but <100% loss of tumor), and complete response (complete disappearance of tumor) (Figure 2).
• Loop 1: 19/24 patients responded well to treatment with FXX. Characterized by higher expression of CLEC19A and LRRCA2.
• Loop 2: 84 patients, 44 responded to FXX and 40 responded to GnP. 78% of the individuals who responded well to GnP are within Loop 2.

A gene interaction network shows that LRRCA2 relates to HOOK1 (Figure 3). HOOK1 negatively regulates epithelial-to-mesenchymal transition (EMT) by inhibiting SHP2 activity and is decreased in PDAC. Simultaneous decreased HOOK1 and SHP2 levels are associated with a better patient drug response to GnP in NSCLC. These results suggest that responses to chemotherapy may be cancer agnostic and may depend on the chemotherapeutic agent and genetic factors involved in disease progression, with LRRCA2 expression acting as a biomarker to choose between GnP and FXX treatment.

CONCLUSIONS & SIGNIFICANCE

SUMMARY OF KEY FINDINGS
Using NetraAI, an augmented intelligence approach, we were able to identify:

• Several distinct signatures within a small dataset (n=308) that would allow oncologists to more confidently choose between FXX or GnP treatment for approximately 20% of patients.
• PDAC patients with decreased HOOK1 and SHP2 expression may better respond to GnP while FXX may be better for those with increased LRRCA2 expression.
• SORT1, an emerging target for pancreatic cancer invasion as a characterization of PDAC patients responding to FXX.

SIGNIFICANCE OF METHODOLOGY & FINDINGS
State of the art AI methods rely on strong effect sizes. The NetraAI brings next generation capabilities to discover subpopulation insights where hidden statistical significance and clinical trial de-risking live. By finding those patients that can be explained, the NetraAI drives clinical innovation.

FUTURE USE & APPLICATION
• Clinical trials can benefit by understanding which patient subpopulations are best aligned with the mechanism of action of their drug to improve drug response signal as evidenced by a significant shift in effect size. Our process can identify those patients which collectively define a response persona that can alter the outcomes of clinical trials.
• This process can also be used for biomarker discovery and for identifying the underlying role of specific genes and pathways involved in regulating the patient response to therapy.

REFERENCES